Question details

QNT/351 Version 5 Real Estate Regression Exercise 2
$ 9.99

Real Estate Regression Exercise
QNT/351 Version 5 University of Phoenix Material
Real Estate Regression Exercise
Directions: Use the real estate data you used for your Week 2 learning team
assignment. Analyze the data and explain your answers.
You are consulting for a large real estate firm. You have been asked to construct a model that can predict
listing prices based on square footages for homes in the city you’ve been researching. You have
data on square footages and listing prices for 100 homes.
1. Which variable is the independent variable (x) and which is the dependent variable (y)?
The sold price is the independent variable X and the square footage is the dependent Y varialble 2. Click on any cell. Click on Insert→Scatter→Scatter with markers (upper left).
To add a trendline, click Tools→Layout→Trendline→Linear Trendline
Does the scatterplot indicate observable correlation? If so, does it seem to be strong or weak?
In what direction?
Yes there is a strong correlation with an increase in price there is also an increase in square
footage. The line has a positive slope.
3. Click on Data→Data Analysis→Regression→OK. Highlight your data (including your two
headings) and input the correct columns into Input Y Range and Input X Range, respectively.
Make sure to check the box entitled “Labels”.
(a) What is the Coefficient of Correlation between square footage and listing price? Regression Statistics
Multiple R
R Square
Adjusted R Square
0.65998187 (b) Does your Coefficient of Correlation seem consistent with your answer to #2 above?
Why or why not? (c) What proportion of the variation in listing price is determined by variation in the square
footage? What proportion of the variation in listing price is due to other factors? Copyright © 2016 by University of Phoenix. All rights reserved. 1 Real Estate Regression Exercise
QNT/351 Version 5
(d) Check the coefficients in your summary output. What is the regression equation relating
square footage to listing price? (e) Test the significance of the slope. What is your t-value for the slope? Do you conclude
that there is no significant relationship between the two variables or do you conclude that
there is a significant relationship between the variables? (f) Using the regression equation that you designated in #3(d) above, what is the predicted
sales price for a house of 2100 square feet? Copyright © 2016 by University of Phoenix. All rights reserved. 

Available solutions